Phagocyte Biology Laboratory

Dr. Bryan Heit, Western University

About Us

Welcome! You have reached the homepage for the laboratory of Dr. Bryan Heit. Our lab is part of the Department of Microbiology and Immunology at Western University, and we are members of the Center for Human Immunology, the lead centre for the CIHR Human Immunology Network.

Our interests surround the function of phagocytes – white blood cells which ingest (phagocytose) pathogens, particles, and dead cells. We focus on the cellular and molecular processes which control the function of these cells during the maintenance of homeostasis, infection and chronic inflammatory disease. Central to most of our studies is the study of efferoctyosis – the phagocytic removal of apoptotic (dying) cells, and how failures in this process lead to inflammation, autoimmunity and infection.


What is a Phagocyte?

Phagocytes are a class of white blood cells which have the capacity to engulf large particles such as bacterial and fungal pathogens, and subsequently destroy the engulfed material. The term phagocyte literally translates to “cell that eats”, which is an apt description of the primary function of these cells in our bodies. While there are many types of phagocytes, the Heit lab focuses primarily on macrophages, which play key roles in both maintaining our bodies and in fighting infections.


Our Methods

We use a combination of advanced microscopy techniques, gene expression analysis and functional assays to investigate the activity of macrophages. Some examples of the methods we employ can be found on our YouTube channel.


Follow Us!

YouTube            Dr. Heit on Twitter


Lab News

Thank You Lung Association!

The Heit Lab is excited to announce that we recently received the Breathe New Life Award, an operating grant which we will use to launch a new research initiative into the mechanisms used by macrophages to promote the healing of lungs following pneumonia, and how bacterial infections modulate this healing process. The ultimate goal is to understand why some patient recover normal lung function following bacterial pneumonia, while others will suffer lifelong impairment of their lung function. By investigating these processes we believe that it will become possible to identify those patients who are at risk of developing impaired lung function, and to develop treatments which will prevent the loss of lung function in these patients.


Description of the Problem

Pneumonia – infection of the lungs by pathogens such as bacteria – are a major cause of hospitalization and death among Canadians. Many pneumonia survivors experience a severe and lasting loss of lung function; the consequences of this range from long-term disability to death. In fact, the likelihood of a pneumonia patient dying from a post-pneumonia complication is higher than the likelihood of a patient dying from the complications of a heart attack or stroke. Clearly, better treatments for recovering lung function are required for pneumonia patients, both to restore normal lung function after disease, and to prevent the deaths resulting from post-pneumonia complications. This proposal is directly focused on understanding how and why lung function is lost following pneumonia. This work may lead to treatments which restore lung repair in pneumonia patients, thereby preventing the loss of lung function that is an all too common result of pneumonia. This would directly improve the lung health of the approximately 11,000 Canadians who die of the lost lung function following pneumonia each year.


Thank You to the Funders of this Project

This award would not be possible without the donations and volunteers that support the Lung Association, and would not have been possible without the scientific support of the Ontario Thoracic Society. For more information on the Lung Association, or to fund additional research into lung health, please follow the link below.


 

 

 

Vesicular Trafficking Shapes Membrane Diffusion

We are excited to announce the publication of our newest paper Membrane Diffusion Occurs by Continuous-Time Random Walk Sustained by Vesicular Trafficking, published in Biophysical Journal. In this paper we investigate the diffusive process that mediates the movement of proteins on the cell surface, and demonstrate a key role of endocytosis and exocytosis in maintaining diffusion within the cell membrane.

Goiko M, de Bruyn JR, Heit B. Membrane Diffusion Occurs by Continuous-Time Random Walk Sustained by Vesicular TraffickingBiophysical Journal. Volume 114, Issue 12, 19 June 2018, Pages 2887–2899.

If you do not have access to the paper, the final author version is available for free as a preprint at Biorxiv.

CSI2018

The Heit lab is having a fantastic time at the Canadian Society for Immunology 2018 Annual Meeting. Great science, great interactions, and more than a bit of fun!

2018 RGE Murray Lecturer Announced

We are excited to announce that the 2018 RGE Murray Lecturship will be given by Dr. Joanna Goldberg from Emory University. Dr. Goldberg is a leading expert in the pathobiology of Pseudomonas and Burkholderia infections during cystic fibrosis. Save the date and attend if you can!

 

 

 

 

 

 

 

 

 

Twitter Feed

Here's what some of the people we follow are saying:

Upcoming Events

June 26, 2018
RGE Murray Lecturer - Dr. Joanna Goldberg (Emory University) - MSB384, 11AM


September 9-13, 2018
2018 World Congress for Microcirculation. - Vancouver, Canada


WordPress Appliance - Powered by TurnKey Linux